[RFCs/IDs] [Plain Text] [From draft-ietf-mpls-lsp-ping]
PROPOSED STANDARD
Errata
Network Working Group K. Kompella
Request for Comments: 4379 Juniper Networks, Inc.
Updates: 1122 G. Swallow
Category: Standards Track Cisco Systems, Inc.
February 2006
Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract
This document describes a simple and efficient mechanism that can be
used to detect data plane failures in Multi-Protocol Label Switching
(MPLS) Label Switched Paths (LSPs). There are two parts to this
document: information carried in an MPLS "echo request" and "echo
reply" for the purposes of fault detection and isolation, and
mechanisms for reliably sending the echo reply.
Table of Contents
1. Introduction ....................................................2
1.1. Conventions ................................................3
1.2. Structure of This Document .................................3
1.3. Contributors ...............................................3
2. Motivation ......................................................4
2.1. Use of Address Range 127/8 .................................4
3. Packet Format ...................................................6
3.1. Return Codes ..............................................10
3.2. Target FEC Stack ..........................................11
3.2.1. LDP IPv4 Prefix ....................................12
3.2.2. LDP IPv6 Prefix ....................................13
3.2.3. RSVP IPv4 LSP ......................................13
3.2.4. RSVP IPv6 LSP ......................................14
3.2.5. VPN IPv4 Prefix ....................................14
3.2.6. VPN IPv6 Prefix ....................................15
3.2.7. L2 VPN Endpoint ....................................16
Kompella & Swallow Standards Track [Page 1]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
3.2.8. FEC 128 Pseudowire (Deprecated) ....................16
3.2.9. FEC 128 Pseudowire (Current) .......................17
3.2.10. FEC 129 Pseudowire ................................18
3.2.11. BGP Labeled IPv4 Prefix ...........................19
3.2.12. BGP Labeled IPv6 Prefix ...........................20
3.2.13. Generic IPv4 Prefix ...............................20
3.2.14. Generic IPv6 Prefix ...............................21
3.2.15. Nil FEC ...........................................21
3.3. Downstream Mapping ........................................22
3.3.1. Multipath Information Encoding .....................26
3.3.2. Downstream Router and Interface ....................28
3.4. Pad TLV ...................................................29
3.5. Vendor Enterprise Number ..................................29
3.6. Interface and Label Stack .................................29
3.7. Errored TLVs ..............................................31
3.8. Reply TOS Byte TLV ........................................31
4. Theory of Operation ............................................32
4.1. Dealing with Equal-Cost Multi-Path (ECMP) .................32
4.2. Testing LSPs That Are Used to Carry MPLS Payloads .........33
4.3. Sending an MPLS Echo Request ..............................33
4.4. Receiving an MPLS Echo Request ............................34
4.4.1. FEC Validation .....................................40
4.5. Sending an MPLS Echo Reply ................................41
4.6. Receiving an MPLS Echo Reply ..............................42
4.7. Issue with VPN IPv4 and IPv6 Prefixes .....................42
4.8. Non-compliant Routers .....................................43
5. References .....................................................43
5.1. Normative References ......................................43
5.2. Informative References ....................................44
6. Security Considerations ........................................44
7. IANA Considerations ............................................46
7.1. Message Types, Reply Modes, Return Codes ..................46
7.2. TLVs ......................................................47
8. Acknowledgements ...............................................48
1. Introduction
This document describes a simple and efficient mechanism that can be
used to detect data plane failures in MPLS Label Switched Paths
(LSPs). There are two parts to this document: information carried in
an MPLS "echo request" and "echo reply", and mechanisms for
transporting the echo reply. The first part aims at providing enough
information to check correct operation of the data plane, as well as
a mechanism to verify the data plane against the control plane, and
thereby localize faults. The second part suggests two methods of
reliable reply channels for the echo request message for more robust
fault isolation.
Kompella & Swallow Standards Track [Page 2]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
An important consideration in this design is that MPLS echo requests
follow the same data path that normal MPLS packets would traverse.
MPLS echo requests are meant primarily to validate the data plane,
and secondarily to verify the data plane against the control plane.
Mechanisms to check the control plane are valuable, but are not
covered in this document.
This document makes special use of the address range 127/8. This is
an exception to the behavior defined in RFC 1122 [RFC1122] and
updates that RFC. The motivation for this change and the details of
this exceptional use are discussed in section 2.1 below.
1.1. Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [KEYWORDS].
The term "Must Be Zero" (MBZ) is used in object descriptions for
reserved fields. These fields MUST be set to zero when sent and
ignored on receipt.
Terminology pertaining to L2 and L3 Virtual Private Networks (VPNs)
is defined in [RFC4026].
Since this document refers to the MPLS Time to Live (TTL) far more
frequently than the IP TTL, the authors have chosen the convention of
using the unqualified "TTL" to mean "MPLS TTL" and using "IP TTL" for
the TTL value in the IP header.
1.2. Structure of This Document
The body of this memo contains four main parts: motivation, MPLS echo
request/reply packet format, LSP ping operation, and a reliable
return path. It is suggested that first-time readers skip the actual
packet formats and read the Theory of Operation first; the document
is structured the way it is to avoid forward references.
1.3. Contributors
The following made vital contributions to all aspects of this
document, and much of the material came out of debate and discussion
among this group.
Ronald P. Bonica, Juniper Networks, Inc.
Dave Cooper, Global Crossing
Ping Pan, Hammerhead Systems
Kompella & Swallow Standards Track [Page 3]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
Nischal Sheth, Juniper Networks, Inc.
Sanjay Wadhwa, Juniper Networks, Inc.
2. Motivation
When an LSP fails to deliver user traffic, the failure cannot always
be detected by the MPLS control plane. There is a need to provide a
tool that would enable users to detect such traffic "black holes" or
misrouting within a reasonable period of time, and a mechanism to
isolate faults.
In this document, we describe a mechanism that accomplishes these
goals. This mechanism is modeled after the ping/traceroute paradigm:
ping (ICMP echo request [ICMP]) is used for connectivity checks, and
traceroute is used for hop-by-hop fault localization as well as path
tracing. This document specifies a "ping" mode and a "traceroute"
mode for testing MPLS LSPs.
The basic idea is to verify that packets that belong to a particular
Forwarding Equivalence Class (FEC) actually end their MPLS path on a
Label Switching Router (LSR) that is an egress for that FEC. This
document proposes that this test be carried out by sending a packet
(called an "MPLS echo request") along the same data path as other
packets belonging to this FEC. An MPLS echo request also carries
information about the FEC whose MPLS path is being verified. This
echo request is forwarded just like any other packet belonging to
that FEC. In "ping" mode (basic connectivity check), the packet
should reach the end of the path, at which point it is sent to the
control plane of the egress LSR, which then verifies whether it is
indeed an egress for the FEC. In "traceroute" mode (fault
isolation), the packet is sent to the control plane of each transit
LSR, which performs various checks that it is indeed a transit LSR
for this path; this LSR also returns further information that helps
check the control plane against the data plane, i.e., that forwarding
matches what the routing protocols determined as the path.
One way these tools can be used is to periodically ping an FEC to
ensure connectivity. If the ping fails, one can then initiate a
traceroute to determine where the fault lies. One can also
periodically traceroute FECs to verify that forwarding matches the
control plane; however, this places a greater burden on transit LSRs
and thus should be used with caution.
2.1. Use of Address Range 127/8
As described above, LSP ping is intended as a diagnostic tool. It is
intended to enable providers of an MPLS-based service to isolate
network faults. In particular, LSP ping needs to diagnose situations
Kompella & Swallow Standards Track [Page 4]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
where the control and data planes are out of sync. It performs this
by routing an MPLS echo request packet based solely on its label
stack. That is, the IP destination address is never used in a
forwarding decision. In fact, the sender of an MPLS echo request
packet may not know, a priori, the address of the router at the end
of the LSP.
Providers of MPLS-based services also need the ability to trace all
of the possible paths that an LSP may take. Since most MPLS services
are based on IP unicast forwarding, these paths are subject to
equal-cost multi-path (ECMP) load sharing.
This leads to the following requirements:
1. Although the LSP in question may be broken in unknown ways, the
likelihood of a diagnostic packet being delivered to a user of an
MPLS service MUST be held to an absolute minimum.
2. If an LSP is broken in such a way that it prematurely terminates,
the diagnostic packet MUST NOT be IP forwarded.
3. A means of varying the diagnostic packets such that they exercise
all ECMP paths is thus REQUIRED.
Clearly, using general unicast addresses satisfies neither of the
first two requirements. A number of other options for addresses were
considered, including a portion of the private address space (as
determined by the network operator) and the newly designated IPv4
link local addresses. Use of the private address space was deemed
ineffective since the leading MPLS-based service is an IPv4 Virtual
Private Network (VPN). VPNs often use private addresses.
The IPv4 link local addresses are more attractive in that the scope
over which they can be forwarded is limited. However, if one were to
use an address from this range, it would still be possible for the
first recipient of a diagnostic packet that "escaped" from a broken
LSP to have that address assigned to the interface on which it
arrived and thus could mistakenly receive such a packet.
Furthermore, the IPv4 link local address range has only recently been
allocated. Many deployed routers would forward a packet with an
address from that range toward the default route.
The 127/8 range for IPv4 and that same range embedded in as IPv4-
mapped IPv6 addresses for IPv6 was chosen for a number of reasons.
RFC 1122 allocates the 127/8 as "Internal host loopback address" and
states: "Addresses of this form MUST NOT appear outside a host."
Thus, the default behavior of hosts is to discard such packets. This
Kompella & Swallow Standards Track [Page 5]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
helps to ensure that if a diagnostic packet is misdirected to a host,
it will be silently discarded.
RFC 1812 [RFC1812] states:
A router SHOULD NOT forward, except over a loopback interface, any
packet that has a destination address on network 127. A router
MAY have a switch that allows the network manager to disable these
checks. If such a switch is provided, it MUST default to
performing the checks.
This helps to ensure that diagnostic packets are never IP forwarded.
The 127/8 address range provides 16M addresses allowing wide
flexibility in varying addresses to exercise ECMP paths. Finally, as
an implementation optimization, the 127/8 provides an easy means of
identifying possible LSP packets.
3. Packet Format
An MPLS echo request is a (possibly labeled) IPv4 or IPv6 UDP packet;
the contents of the UDP packet have the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version Number | Global Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type | Reply mode | Return Code | Return Subcode|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender's Handle |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TimeStamp Sent (seconds) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TimeStamp Sent (microseconds) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TimeStamp Received (seconds) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TimeStamp Received (microseconds) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TLVs ... |
. .
. .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Kompella & Swallow Standards Track [Page 6]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
The Version Number is currently 1. (Note: the version number is to
be incremented whenever a change is made that affects the ability of
an implementation to correctly parse or process an MPLS echo
request/reply. These changes include any syntactic or semantic
changes made to any of the fixed fields, or to any Type-Length-Value
(TLV) or sub-TLV assignment or format that is defined at a certain
version number. The version number may not need to be changed if an
optional TLV or sub-TLV is added.)
The Global Flags field is a bit vector with the following format:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MBZ |V|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
One flag is defined for now, the V bit; the rest MUST be set to zero
when sending and ignored on receipt.
The V (Validate FEC Stack) flag is set to 1 if the sender wants the
receiver to perform FEC Stack validation; if V is 0, the choice is
left to the receiver.
The Message Type is one of the following:
Value Meaning
----- -------
1 MPLS echo request
2 MPLS echo reply
The Reply Mode can take one of the following values:
Value Meaning
----- -------
1 Do not reply
2 Reply via an IPv4/IPv6 UDP packet
3 Reply via an IPv4/IPv6 UDP packet with Router Alert
4 Reply via application level control channel
An MPLS echo request with 1 (Do not reply) in the Reply Mode field
may be used for one-way connectivity tests; the receiving router may
log gaps in the Sequence Numbers and/or maintain delay/jitter
statistics. An MPLS echo request would normally have 2 (Reply via an
IPv4/IPv6 UDP packet) in the Reply Mode field. If the normal IP
return path is deemed unreliable, one may use 3 (Reply via an
IPv4/IPv6 UDP packet with Router Alert). Note that this requires
that all intermediate routers understand and know how to forward MPLS
Kompella & Swallow Standards Track [Page 7]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
echo replies. The echo reply uses the same IP version number as the
received echo request, i.e., an IPv4 encapsulated echo reply is sent
in response to an IPv4 encapsulated echo request.
Some applications support an IP control channel. One such example is
the associated control channel defined in Virtual Circuit
Connectivity Verification (VCCV) [VCCV]. Any application that
supports an IP control channel between its control entities may set
the Reply Mode to 4 (Reply via application level control channel) to
ensure that replies use that same channel. Further definition of
this codepoint is application specific and thus beyond the scope of
this document.
Return Codes and Subcodes are described in the next section.
The Sender's Handle is filled in by the sender, and returned
unchanged by the receiver in the echo reply (if any). There are no
semantics associated with this handle, although a sender may find
this useful for matching up requests with replies.
The Sequence Number is assigned by the sender of the MPLS echo
request and can be (for example) used to detect missed replies.
The TimeStamp Sent is the time-of-day (in seconds and microseconds,
according to the sender's clock) in NTP format [NTP] when the MPLS
echo request is sent. The TimeStamp Received in an echo reply is the
time-of-day (according to the receiver's clock) in NTP format that
the corresponding echo request was received.
TLVs (Type-Length-Value tuples) have the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value |
. .
. .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Types are defined below; Length is the length of the Value field in
octets. The Value field depends on the Type; it is zero padded to
align to a 4-octet boundary. TLVs may be nested within other TLVs,
in which case the nested TLVs are called sub-TLVs. Sub-TLVs have
independent types and MUST also be 4-octet aligned.
Kompella & Swallow Standards Track [Page 8]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
Two examples follow. The Label Distribution Protocol (LDP) IPv4 FEC
sub-TLV has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (LDP IPv4 FEC) | Length = 5 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 prefix |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Length for this TLV is 5. A Target FEC Stack TLV that contains
an LDP IPv4 FEC sub-TLV and a VPN IPv4 prefix sub-TLV has the
following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (FEC TLV) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sub-Type = 1 (LDP IPv4 FEC) | Length = 5 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 prefix |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sub-Type = 6 (VPN IPv4 prefix)| Length = 13 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Route Distinguisher |
| (8 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 prefix |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Kompella & Swallow Standards Track [Page 9]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
A description of the Types and Values of the top-level TLVs for LSP
ping are given below:
Type # Value Field
------ -----------
1 Target FEC Stack
2 Downstream Mapping
3 Pad
4 Not Assigned
5 Vendor Enterprise Number
6 Not Assigned
7 Interface and Label Stack
8 Not Assigned
9 Errored TLVs
10 Reply TOS Byte
Types less than 32768 (i.e., with the high-order bit equal to 0) are
mandatory TLVs that MUST either be supported by an implementation or
result in the return code of 2 ("One or more of the TLVs was not
understood") being sent in the echo response.
Types greater than or equal to 32768 (i.e., with the high-order bit
equal to 1) are optional TLVs that SHOULD be ignored if the
implementation does not understand or support them.
3.1. Return Codes
The Return Code is set to zero by the sender. The receiver can set
it to one of the values listed below. The notation <RSC> refers to
the Return Subcode. This field is filled in with the stack-depth for
those codes that specify that. For all other codes, the Return
Subcode MUST be set to zero.
Value Meaning
----- -------
0 No return code
1 Malformed echo request received
2 One or more of the TLVs was not understood
3 Replying router is an egress for the FEC at stack-
depth <RSC>
4 Replying router has no mapping for the FEC at stack-
depth <RSC>
Kompella & Swallow Standards Track [Page 10]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
5 Downstream Mapping Mismatch (See Note 1)
6 Upstream Interface Index Unknown (See Note 1)
7 Reserved
8 Label switched at stack-depth <RSC>
9 Label switched but no MPLS forwarding at stack-depth
<RSC>
10 Mapping for this FEC is not the given label at stack-
depth <RSC>
11 No label entry at stack-depth <RSC>
12 Protocol not associated with interface at FEC stack-
depth <RSC>
13 Premature termination of ping due to label stack
shrinking to a single label
Note 1
The Return Subcode contains the point in the label stack where
processing was terminated. If the RSC is 0, no labels were
processed. Otherwise the packet would have been label switched at
depth RSC.
3.2. Target FEC Stack
A Target FEC Stack is a list of sub-TLVs. The number of elements is
determined by looking at the sub-TLV length fields.
Sub-Type Length Value Field
-------- ------ -----------
1 5 LDP IPv4 prefix
2 17 LDP IPv6 prefix
3 20 RSVP IPv4 LSP
4 56 RSVP IPv6 LSP
5 Not Assigned
6 13 VPN IPv4 prefix
7 25 VPN IPv6 prefix
8 14 L2 VPN endpoint
9 10 "FEC 128" Pseudowire (deprecated)
10 14 "FEC 128" Pseudowire
11 16+ "FEC 129" Pseudowire
12 5 BGP labeled IPv4 prefix
Kompella & Swallow Standards Track [Page 11]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
13 17 BGP labeled IPv6 prefix
14 5 Generic IPv4 prefix
15 17 Generic IPv6 prefix
16 4 Nil FEC
Other FEC Types will be defined as needed.
Note that this TLV defines a stack of FECs, the first FEC element
corresponding to the top of the label stack, etc.
An MPLS echo request MUST have a Target FEC Stack that describes the
FEC Stack being tested. For example, if an LSR X has an LDP mapping
[LDP] for 192.168.1.1 (say, label 1001), then to verify that label
1001 does indeed reach an egress LSR that announced this prefix via
LDP, X can send an MPLS echo request with an FEC Stack TLV with one
FEC in it, namely, of type LDP IPv4 prefix, with prefix
192.168.1.1/32, and send the echo request with a label of 1001.
Say LSR X wanted to verify that a label stack of <1001, 23456> is the
right label stack to use to reach a VPN IPv4 prefix [see section
3.2.5] of 10/8 in VPN foo. Say further that LSR Y with loopback
address 192.168.1.1 announced prefix 10/8 with Route Distinguisher
RD-foo-Y (which may in general be different from the Route
Distinguisher that LSR X uses in its own advertisements for VPN foo),
label 23456 and BGP next hop 192.168.1.1 [BGP]. Finally, suppose
that LSR X receives a label binding of 1001 for 192.168.1.1 via LDP.
X has two choices in sending an MPLS echo request: X can send an MPLS
echo request with an FEC Stack TLV with a single FEC of type VPN IPv4
prefix with a prefix of 10/8 and a Route Distinguisher of RD-foo-Y.
Alternatively, X can send an FEC Stack TLV with two FECs, the first
of type LDP IPv4 with a prefix of 192.168.1.1/32 and the second of
type of IP VPN with a prefix 10/8 with Route Distinguisher of RD-
foo-Y. In either case, the MPLS echo request would have a label
stack of <1001, 23456>. (Note: in this example, 1001 is the "outer"
label and 23456 is the "inner" label.)
3.2.1. LDP IPv4 Prefix
The IPv4 Prefix FEC is defined in [LDP]. When an LDP IPv4 prefix is
encoded in a label stack, the following format is used. The value
consists of 4 octets of an IPv4 prefix followed by 1 octet of prefix
length in bits; the format is given below. The IPv4 prefix is in
network byte order; if the prefix is shorter than 32 bits, trailing
bits SHOULD be set to zero. See [LDP] for an example of a Mapping
for an IPv4 FEC.
Kompella & Swallow Standards Track [Page 12]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 prefix |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.2.2. LDP IPv6 Prefix
The IPv6 Prefix FEC is defined in [LDP]. When an LDP IPv6 prefix is
encoded in a label stack, the following format is used. The value
consists of 16 octets of an IPv6 prefix followed by 1 octet of prefix
length in bits; the format is given below. The IPv6 prefix is in
network byte order; if the prefix is shorter than 128 bits, the
trailing bits SHOULD be set to zero. See [LDP] for an example of a
Mapping for an IPv6 FEC.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 prefix |
| (16 octets) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.2.3. RSVP IPv4 LSP
The value has the format below. The value fields are taken from RFC
3209, sections 4.6.1.1 and 4.6.2.1. See [RSVP-TE].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 tunnel end point address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Must Be Zero | Tunnel ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Extended Tunnel ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 tunnel sender address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Must Be Zero | LSP ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Kompella & Swallow Standards Track [Page 13]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
3.2.4. RSVP IPv6 LSP
The value has the format below. The value fields are taken from RFC
3209, sections 4.6.1.2 and 4.6.2.2. See [RSVP-TE].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 tunnel end point address |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Must Be Zero | Tunnel ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Extended Tunnel ID |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 tunnel sender address |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Must Be Zero | LSP ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.2.5. VPN IPv4 Prefix
VPN-IPv4 Network Layer Routing Information (NLRI) is defined in
[RFC4365]. This document uses the term VPN IPv4 prefix for a VPN-
IPv4 NLRI that has been advertised with an MPLS label in BGP. See
[BGP-LABEL].
Kompella & Swallow Standards Track [Page 14]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
When a VPN IPv4 prefix is encoded in a label stack, the following
format is used. The value field consists of the Route Distinguisher
advertised with the VPN IPv4 prefix, the IPv4 prefix (with trailing 0
bits to make 32 bits in all), and a prefix length, as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Route Distinguisher |
| (8 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 prefix |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Route Distinguisher (RD) is an 8-octet identifier; it does not
contain any inherent information. The purpose of the RD is solely to
allow one to create distinct routes to a common IPv4 address prefix.
The encoding of the RD is not important here. When matching this
field to the local FEC information, it is treated as an opaque value.
3.2.6. VPN IPv6 Prefix
VPN-IPv6 Network Layer Routing Information (NLRI) is defined in
[RFC4365]. This document uses the term VPN IPv6 prefix for a VPN-
IPv6 NLRI that has been advertised with an MPLS label in BGP. See
[BGP-LABEL].
When a VPN IPv6 prefix is encoded in a label stack, the following
format is used. The value field consists of the Route Distinguisher
advertised with the VPN IPv6 prefix, the IPv6 prefix (with trailing 0
bits to make 128 bits in all), and a prefix length, as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Route Distinguisher |
| (8 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 prefix |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Kompella & Swallow Standards Track [Page 15]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
The Route Distinguisher is identical to the VPN IPv4 Prefix RD,
except that it functions here to allow the creation of distinct
routes to IPv6 prefixes. See section 3.2.5. When matching this
field to local FEC information, it is treated as an opaque value.
3.2.7. L2 VPN Endpoint
VPLS stands for Virtual Private LAN Service. The terms VPLS BGP NLRI
and VE ID (VPLS Edge Identifier) are defined in [VPLS-BGP]. This
document uses the simpler term L2 VPN endpoint when referring to a
VPLS BGP NLRI. The Route Distinguisher is an 8-octet identifier used
to distinguish information about various L2 VPNs advertised by a
node. The VE ID is a 2-octet identifier used to identify a
particular node that serves as the service attachment point within a
VPLS. The structure of these two identifiers is unimportant here;
when matching these fields to local FEC information, they are treated
as opaque values. The encapsulation type is identical to the PW Type
in section 3.2.8 below.
When an L2 VPN endpoint is encoded in a label stack, the following
format is used. The value field consists of a Route Distinguisher (8
octets), the sender (of the ping)'s VE ID (2 octets), the receiver's
VE ID (2 octets), and an encapsulation type (2 octets), formatted as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Route Distinguisher |
| (8 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender's VE ID | Receiver's VE ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Encapsulation Type | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.2.8. FEC 128 Pseudowire (Deprecated)
FEC 128 (0x80) is defined in [PW-CONTROL], as are the terms PW ID
(Pseudowire ID) and PW Type (Pseudowire Type). A PW ID is a non-zero
32-bit connection ID. The PW Type is a 15-bit number indicating the
encapsulation type. It is carried right justified in the field below
termed encapsulation type with the high-order bit set to zero. Both
of these fields are treated in this protocol as opaque values.
Kompella & Swallow Standards Track [Page 16]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
When an FEC 128 is encoded in a label stack, the following format is
used. The value field consists of the remote PE address (the
destination address of the targeted LDP session), the PW ID, and the
encapsulation type as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote PE Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PW ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PW Type | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This FEC is deprecated and is retained only for backward
compatibility. Implementations of LSP ping SHOULD accept and process
this TLV, but SHOULD send LSP ping echo requests with the new TLV
(see next section), unless explicitly configured to use the old TLV.
An LSR receiving this TLV SHOULD use the source IP address of the LSP
echo request to infer the sender's PE address.
3.2.9. FEC 128 Pseudowire (Current)
FEC 128 (0x80) is defined in [PW-CONTROL], as are the terms PW ID
(Pseudowire ID) and PW Type (Pseudowire Type). A PW ID is a non-zero
32-bit connection ID. The PW Type is a 15-bit number indicating the
encapsulation type. It is carried right justified in the field below
termed encapsulation type with the high-order bit set to zero.
Both of these fields are treated in this protocol as opaque values.
When matching these field to the local FEC information, the match
MUST be exact.
Kompella & Swallow Standards Track [Page 17]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
When an FEC 128 is encoded in a label stack, the following format is
used. The value field consists of the sender's PE address (the
source address of the targeted LDP session), the remote PE address
(the destination address of the targeted LDP session), the PW ID, and
the encapsulation type as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender's PE Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote PE Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PW ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PW Type | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.2.10. FEC 129 Pseudowire
FEC 129 (0x81) and the terms PW Type, Attachment Group Identifier
(AGI), Attachment Group Identifier Type (AGI Type), Attachment
Individual Identifier Type (AII Type), Source Attachment Individual
Identifier (SAII), and Target Attachment Individual Identifier (TAII)
are defined in [PW-CONTROL]. The PW Type is a 15-bit number
indicating the encapsulation type. It is carried right justified in
the field below PW Type with the high-order bit set to zero. All the
other fields are treated as opaque values and copied directly from
the FEC 129 format. All of these values together uniquely define the
FEC within the scope of the LDP session identified by the source and
remote PE addresses.
Kompella & Swallow Standards Track [Page 18]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
When an FEC 129 is encoded in a label stack, the following format is
used. The Length of this TLV is 16 + AGI length + SAII length + TAII
length. Padding is used to make the total length a multiple of 4;
the length of the padding is not included in the Length field.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender's PE Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote PE Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PW Type | AGI Type | AGI Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ AGI Value ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AII Type | SAII Length | SAII Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ SAII Value (continued) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AII Type | TAII Length | TAII Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ TAII Value (continued) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TAII (cont.) | 0-3 octets of zero padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.2.11. BGP Labeled IPv4 Prefix
BGP labeled IPv4 prefixes are defined in [BGP-LABEL]. When a BGP
labeled IPv4 prefix is encoded in a label stack, the following format
is used. The value field consists the IPv4 prefix (with trailing 0
bits to make 32 bits in all), and the prefix length, as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 Prefix |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Kompella & Swallow Standards Track [Page 19]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
3.2.12. BGP Labeled IPv6 Prefix
BGP labeled IPv6 prefixes are defined in [BGP-LABEL]. When a BGP
labeled IPv6 prefix is encoded in a label stack, the following format
is used. The value consists of 16 octets of an IPv6 prefix followed
by 1 octet of prefix length in bits; the format is given below. The
IPv6 prefix is in network byte order; if the prefix is shorter than
128 bits, the trailing bits SHOULD be set to zero.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 prefix |
| (16 octets) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.2.13. Generic IPv4 Prefix
The value consists of 4 octets of an IPv4 prefix followed by 1 octet
of prefix length in bits; the format is given below. The IPv4 prefix
is in network byte order; if the prefix is shorter than 32 bits,
trailing bits SHOULD be set to zero. This FEC is used if the
protocol advertising the label is unknown or may change during the
course of the LSP. An example is an inter-AS LSP that may be
signaled by LDP in one Autonomous System (AS), by RSVP-TE [RSVP-TE]
in another AS, and by BGP between the ASes, such as is common for
inter-AS VPNs.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 prefix |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Kompella & Swallow Standards Track [Page 20]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
3.2.14. Generic IPv6 Prefix
The value consists of 16 octets of an IPv6 prefix followed by 1 octet
of prefix length in bits; the format is given below. The IPv6 prefix
is in network byte order; if the prefix is shorter than 128 bits, the
trailing bits SHOULD be set to zero.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 prefix |
| (16 octets) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Must Be Zero |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.2.15. Nil FEC
At times, labels from the reserved range, e.g., Router Alert and
Explicit-null, may be added to the label stack for various diagnostic
purposes such as influencing load-balancing. These labels may have
no explicit FEC associated with them. The Nil FEC Stack is defined
to allow a Target FEC Stack sub-TLV to be added to the Target FEC
Stack to account for such labels so that proper validation can still
be performed.
The Length is 4. Labels are 20-bit values treated as numbers.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label | MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Label is the actual label value inserted in the label stack; the MBZ
fields MUST be zero when sent and ignored on receipt.
Kompella & Swallow Standards Track [Page 21]
RFC 4379 Detecting MPLS Data Plane Failures February 2006
3.3. Downstream Mapping
The Downstream Mapping object is a TLV that MAY be included in an
echo request message. Only one Downstream Mapping object may appear
in an echo request. The presence of a Downstream Mapping object is a
request that Downstream Mapping objects be included in the echo
reply. If the replying router is the destination of the FEC, then a
Downstream Mapping TLV SHOULD NOT be included in the echo reply.
Otherwise the replying router SHOULD include a Downstream Mapping
object for each interface over which this FEC could be forwarded.
For a more precise definition of the notion of "downstream", see
section 3.3.2, "Downstream Router and Interface".
The Length is K + M + 4*N octets, where M is the Multipath Length,
and N is the number of Downstream Labels. Values for K are found in
the description of Address Type below. The Value field of a
Downstream Mapping has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MTU | Address Type | DS Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream IP Address (4 or 16 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Interface Address (4 or 16 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Multipath Type| Depth Limit | Multipath Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. (Multipath Information) .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Label | Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Downstream Label | Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Maximum Transmission Unit (MTU)
The MTU is the size in octets of the largest MPLS frame (including
label stack) that fits on the interface to the Downstream LSR.
Kompella & Swallow Standards Track [Page 22]
RFC 4379 Detecting MPLS Data Plane Failures